Towards Ontology Generation from Tables

Yuri A. Tijerino (yuri@cs.byu.edu), David W. Embley (embley@cs.byu.edu), Deryle W. Lonsdale (lonz@byu.edu) and YiHong Ding (ding@cs.byu.edu)
Brigham Young University

George Nagy (nagy@ecse.rpi.edu)
Rensselaer Polytechnic Institute

Abstract. At the heart of today's information-explosion problems are issues involving semantics, mutual understanding, concept matching, and interoperability. Ontologies and the Semantic Web are offered as a potential solution, but creating ontological descriptions for real-world information is nontrivial. If we could automate the process, we could significantly improve our chances of making the Semantic Web a reality. While understanding natural language is difficult, tables and other structured information make it easier to interpret new items and relations. In this paper we present an approach to generating ontologies based on table analysis. We thus call our approach TANGO (Table ANalysis for Generating Ontologies). Based on conceptual modeling extraction techniques, TANGO attempts to (i) understand a table's structure and conceptual content; (ii) discover the constraints that hold between concepts extracted from the table; (iii) match the recognized concepts with ones from a more general specification of related concepts; and (iv) merge the resulting structure with other similar knowledge representations. TANGO is thus a formalized method of processing the format and content of tables that can serve to incrementally build a relevant reusable conceptual ontology.

Keywords: Ontology, table understanding, ontology generation, semantic web.

1. Introduction

The exponential increase in new knowledge that characterizes our modern age of information technology precludes depending solely on individual effort to keep up with new information. We must therefore develop new ways of “keeping up,” and we must develop them quickly. The Semantic Web [2] offers a promise that we can “keep up” by allowing software agents to roam in cyberspace in our behalf, where they can gather information of interest and synergistically assist us in decision making and in negotiating for our wants and desires. This ideal, however, relies on agents being able to find and manipulate useful information, which, in turn, relies on having an abundance of ontologically described repositories. Hence, the fundamental enabling component for the Semantic Web is an ontological description of information, which provides for a shared understanding of a repository of information.

Unfortunately, creating ontological descriptions for information repositories is nontrivial. If we could automate the process, or at least make the process semiautomatic, we could significantly improve our chances of making the Semantic Web a reality. In this paper, we describe a unified framework for ontology generation from tables that meets this challenge.

Motivated by our belief that inference about unknown objects and relations in a known context can be automated, we describe an information gathering engine that assimilates and organizes knowledge. While understanding context in a natural language setting is difficult, structured information such as tables\(^1\) makes it easier to interpret new items and relations. We organize the new knowledge we gain from “understanding” tables as an ontology and thus we call our information-gathering engine TANGO (Table ANalysis for Generating Ontologies) [33].

Our approach to ontology generation can be considered as semiautomated, applied “ontological engineering” [29]. However, instead of humans collaborating to design an ontology, we enable tables to “collaborate” to design an ontology. In a sense, this is the same because TANGO assembles information from specific instances of human-created tables.

We present the details of our vision for TANGO as follows. In Section 2 we describe the basics of our approach to automated knowledge gathering. For illustration we use the domain of geopolitical facts and relations, where relevant empirical data is widely scattered but often presented in the form of tables. Using this domain, we illustrate the specifics of our ideas in: Section 3, where we show that most semi-structured, factual data is table-equivalent; Section 4, where we show how to discover ontologies from tables; Section 5, where we show how to discover mappings between ontologies; and Section 6, where we investigate how to merge ontologies. Section 7 describes potential applications where the results of this work could make a significant impact, particularly as related to the Semantic Web. We make some concluding remarks in Section 8.

\(^1\) Tables have a particular spatial layout of material [35] that carries significant meaning. [20] describes tables as “organizational resources to enable meaningful relations to be recovered from bare thematic items in the absence of grammatical constructions,” and argues that there is always “an implied grammar” and a recoverable textual sentence or paragraph for every table.”
2. Ontology Generation Approach

Our table analysis approach to ontology generation addresses the principle creation of ontologies based on the content of normalized tables. TANGO operates in four steps:

1. Recognize and normalize table information.

2. Construct mini-ontologies from normalized tables.

3. Discover inter-ontology mappings.

4. Merge mini-ontologies into a growing application ontology.

We will describe these steps in the following chapters. First, though, some general remarks on knowledge sources are necessary.

In support of these four steps TANGO relies on auxiliary information. This auxiliary information includes dictionaries and lexical data (including WordNet [17], natural language parsers, and data frames [11], which are similar in intent to the base knowledge for ontologies proposed in [32].

We are creating our own data frame library. In essence, each data frame in the library encapsulates the essential properties of one of the common data formats in the real world such as dates, currencies, numbers, percentages, weights, measures, and so forth. A data frame extends an abstract data type to include not only an internal data representation and applicable operations but also detailed representational and contextual information that allows a string that appears in a text document to be classified as belonging to the data frame. Data frames can be thought of as recognizers that help us associate unstructured data with common concepts. Thus, for example, a data frame for a longitude/latitude location on the earth’s surface has regular expressions that recognize all forms of longitude and latitude values and regular expression recognizers for keywords such as “lon.”, “lat.”, “degrees north”, “degrees east”, and “position”.

Given the data frame library and other auxiliary information mentioned above, we begin with the first step: recognize and normalize table information. We illustrate this step in the following section.

3. Table Recognition and Normalization

Although many consider the idea of a table to be simple, a careful study (e.g. [22]) reveals that the question “What constitutes a table?”

Towards Ontology Generation from Tables
is indeed difficult to answer. As only two of thousands of examples, does the information in Figure 1 constitute a table? What about the information in Figure 2?

We have chosen to define a table indirectly through information normalization. Working backwards, we first consider relations in a relational database to be tables in a normalized form. Using a standard, formal definition of a relational database table [24], we can define a normalized table as follows. A schema for a normalized table is a finite set \(\{ L_1, ..., L_n \} \) of label names or phrases, which are simply called labels. Corresponding to each label \(L_i \), \(1 \leq i \leq n \), is a set \(D_i \), called the domain of \(L_i \). Let \(D = D_1 \cup ... \cup D_n \). A normalized table \(T \) with table schema \(S \) is a set of functions \(T = \{ t_1, ..., t_m \} \) from \(S \) to \(D \) with the restriction that for each function \(t \in T \), \(t(L_i) \in D_i \), \(1 \leq i \leq n \).

As is common for relational databases, we often display tables in two dimensions. When we display a table two dimensionally, we fix the
order of the labels in the schema for each function and factor these labels to the top as column headers. Each row in the table constitutes the domain values for the corresponding labels in the column headers. Thus, for example, we can display the normalized table \{\{(A, 1), (B, 2), (C, 3)\}, \{(A, 4), (B, 5), (C, 6)\}\} as follows.

\[
\begin{array}{ccc}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{array}
\]

Displayed in this form, a normalized table is simply called a table. Whether the original information should be called a “table” may be debatable. To avoid the argument, whenever there may be doubt (e.g., Figure 1 and Figure 2), we will refer to the information as table-equivalent data.

When we normalize the table-equivalent data in Figure 1, we obtain Table 1.\(^2\) To normalize the table-equivalent data in Figure 2 to obtain Table 2, we first recognize that the data is split across many web pages; each page has the same data but for a different country. Thus, each page is itself a function from the labels, which are phrases on the left composed with the sub-label phrases on the right, to domain values, which are non-label values on the right. In addition, there are explanatory comments, which we can standardize as footnotes.

So, how can we determine whether we have table-equivalent data, and how can we turn table-like information into normalized tables? Since we have defined a table indirectly and by construction, we only need to answer the second question. If we can turn semi-structured information into a normalized table, we can declare that the semi-structured information is table-equivalent data and that the normalized table is a table.
Table 2. Partial Normalized Table for People in the 2003 CIA World Factbook [37].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>26,717,713</td>
<td>18.9 years</td>
<td>19.1 years</td>
</tr>
<tr>
<td>Albania</td>
<td>3,582,305</td>
<td>26.5 years</td>
<td>24.8 years</td>
</tr>
</tbody>
</table>

* Note: this rate does not take into consideration the recent war and its continuing impact.

There is a spectrum of cases to be considered. At the one extreme, we may already have information presented as a normalized table. All relational database tables, for example, are normalized tables, and many tables on the web appear essentially in normalized form. Other web tables, however, pose problems such as tables displayed piecemeal, tables spanning multiple pages, tables with no `<table>` tag, folded tables, tables with factored rows, tables with linked subtables, and table rows with additional linked row values, all of which we have dealt with in previous work [16]. Some tables, more difficult to interpret, include features such as tables nested within table rows, folded table rows, and tables with both column and row headings. Table-equivalent data that does not have a typical two-dimensional layout is more difficult, but we have experimented with techniques to interpret them. Using ideas developed in [16], for example, we can distinguish label text versus value text from the World Factbook in Figure 2 by comparing the pages—the label text stays constant from page to page whereas the value text changes.

As an example of how TANGO interprets tables, we describe the process it uses to generate normalized Table 1 from Figure 1.

Segment Page: TANGO recognizes the different parts of the page. Simple analysis of the document HTML source indicates that there are two main regions in the document. One is the table data as indicated by `<table>` and `</table>` which encapsulate the records for each of the countries. The second part is everything else. Though often indicative of a table, we note that neither the presence nor absence of `<table>` `</table>` tags dictates the presence nor the absence of a table. It is possible, for example, to create the same structure for Figure 1 using itemization tags such as `` and ``.

Identify Columns: Analysis of patterns using techniques described in [8] leads TANGO to the segmentation shown in Table 3. Recognizing that there are common patterns in records, TANGO can extract different columns for this table. For instance, TANGO
Table 3. Preliminary table generated from Figure 1

<table>
<thead>
<tr>
<th>Country</th>
<th>Num String</th>
<th>Parenth. data</th>
<th>Same char string</th>
<th>Combined data</th>
<th>Combined data</th>
<th>Combined data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>26,813,057 (July 2001 est.)</td>
<td>Sunni Muslim 84%</td>
<td>Sha’a Muslim</td>
<td>other 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>3,510,484 (July 2001 est.)</td>
<td>Muslim 70%</td>
<td>Albanian Orthodox 20%</td>
<td>Roman Catholic 10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Second preliminary table generated from Table 3

<table>
<thead>
<tr>
<th>Country</th>
<th>Num String</th>
<th>Parenth. data</th>
<th>Same char string</th>
<th>Albanian Muslim</th>
<th>Roman Catholic</th>
<th>Sha’a Muslim</th>
<th>Sunni Muslim</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>26,813,057 (July 2001 est.)</td>
<td></td>
<td></td>
<td>15%</td>
<td>84%</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>3,510,484 (July 2001 est.)</td>
<td></td>
<td></td>
<td>20%</td>
<td>70%</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... can recognize that there is a character string (i.e. a country), followed by a number string (i.e. a population), followed by a mixed character and number string in parentheses, followed by the string “Religions”, followed by a comma-separated combination of character strings (i.e. a religion) and a value (i.e. a percentage).

Apply Data Frames: Using our data frames, TANGO recognizes that the strings in Column 1 are country names; thus TANGO names the first column “Country”. Further TANGO recognizes percentages, which incidentally add up to 100% in each record. Even in the absence of a data frame for recognizing religion names, TANGO can detect the pattern that a string (often the same string) precedes each value, which leads to the inference that the character strings should be promoted as column names. This process results in preliminary Table 4.

Apply WordNet Heuristics: Table 4 can be further normalized by applying other techniques. In this case TANGO recognizes that the 4th column consistently shows the same item, namely “Religions:”. Using WordNet TANGO recognizes that the labels for Columns 5 through 10 are hyponyms of the Religion concept. This leads it to promote “Religions” to a parent column for column labels that refer to religions. A similar situation occurs with the string “(July 2001 est.)” in Column 3. WordNet, however, does not recognize...
Table 5. Partial Normalized Table for Geography in the 2003 CIA World Factbook [37].

<table>
<thead>
<tr>
<th>Country</th>
<th>Location Description</th>
<th>Geographic Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Southern Asia, north and west of Pakistan, east of Iran</td>
<td>33 00 N, 65 00 E</td>
</tr>
<tr>
<td>Albania</td>
<td>Southeastern Europe, bordering on the Adriatic Sea and Ionian Sea, between Greece and Serbia and Montenegro</td>
<td>41 00 N, 20 00 E</td>
</tr>
</tbody>
</table>

“(July 2001 est.)” as a hyponym for the religion strings. Therefore, TANGO leaves it as is for now.

Apply Other Heuristics: Next TANGO recognizes, from the table label in Figure 1, “World Population”, that the table is about population. Since the string “(July 2001 est.)” also appears in the header of the table near “World Population”, TANGO infers that “Population” refers to the numbers in Column 2 and that “(July 2001 est.)” is part of the label as well. Table 1 shows the result from this and the previous steps.

In addition to the process described above, it should be noted that we not only normalize the structure of the tables as explained, but we also use data frames to normalize the values. Hence for each common data item we have all values in the same units, and we can display values with the same (or different) precision, as desired. For example, we can use meters rather than feet or yards, and we can display population values in (rounded) millions if we wish.

In discussing the remaining three steps in the subsequent sections, we assume for these examples that we have all the information from the partial tables in Tables 1 and 2, and from the partial normalized tables in Tables 5, 6, 7, and 8.

3 These normalized tables are subparts of actual tables found on the web—subparts in the same sense that the table-equivalent data in Table 2 is a subpart of the table in Figure 2 (i.e. we have omitted some of the information). A reference for each original table from which we drew the information appears in the bibliography. We chose the subset presented here for the purpose of illustration.
Table 6. Partial Normalized Table for Largest Populations [36].

<table>
<thead>
<tr>
<th>Place</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>3,674,000,000</td>
</tr>
<tr>
<td>Africa</td>
<td>778,000,000</td>
</tr>
<tr>
<td>New York City, New York</td>
<td>8,040,000</td>
</tr>
<tr>
<td>Los Angeles, California</td>
<td>3,700,000</td>
</tr>
<tr>
<td>Mumbai, India</td>
<td>12,150,000</td>
</tr>
<tr>
<td>Buenos Aires, Argentina</td>
<td>11,960,000</td>
</tr>
<tr>
<td>China</td>
<td>1,256,167,701*</td>
</tr>
<tr>
<td>India</td>
<td>1,017,645,163*</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Partial Normalized Table for US Topographical Maps [34].

<table>
<thead>
<tr>
<th>Place</th>
<th>Type</th>
<th>Elevation*</th>
<th>USGS Quad</th>
<th>Lat</th>
<th>Lon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonnie Lake</td>
<td>reservoir</td>
<td>unknown</td>
<td>Seivern</td>
<td>33 72 N</td>
<td>81 42 W</td>
</tr>
<tr>
<td>Bonnie Lake</td>
<td>lake</td>
<td>unknown</td>
<td>Mirror Lake</td>
<td>40 71 N</td>
<td>110 88 W</td>
</tr>
<tr>
<td>New York</td>
<td>town/city</td>
<td>unknown</td>
<td>Jersey City</td>
<td>40 71 N</td>
<td>74 01 W</td>
</tr>
<tr>
<td>New York</td>
<td>town/city</td>
<td>149 meters</td>
<td>Leagueville</td>
<td>32 17 N</td>
<td>95 67 W</td>
</tr>
<tr>
<td>New York</td>
<td>mine</td>
<td>unknown</td>
<td>Heber City</td>
<td>40 62 N</td>
<td>111 49 W</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Elevation values in this table are approximate, and often subject to a large degree of error. If in doubt, check the actual value on the map.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Partial Normalized Table for Most Spoken Languages [30].

<table>
<thead>
<tr>
<th>Place</th>
<th>Language</th>
<th>Speakers</th>
<th>Where Spoken (Major)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mandarin</td>
<td>885,000,000</td>
<td>China, Malaysia, Taiwan</td>
</tr>
<tr>
<td>2</td>
<td>Spanish</td>
<td>332,000,000</td>
<td>South America, Central America, Spain</td>
</tr>
<tr>
<td>3</td>
<td>English</td>
<td>322,000,000</td>
<td>USA, UK, Australia, Canada, New Zealand</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Construction of Mini-Ontologies

We have chosen to use OSM [15] for the representation of our ontologies in TANGO because of the richness this representation affords us. OSM is an expressive object-oriented model for system analysis, specification, design, implementation, and evolution [12]. The structural components of OSM include object sets and relationship sets. OSM supports the abstraction of generalization and specialization because an object set can be a superset or subset of another object set. Relationship sets support n-ary relationships among objects sets, whole/part aggregations, and set/member associations. A relationship set also allows for the definition of cardinality constraints among object sets. We have found this representation to be more expressive than emerging standard representations such as RDF, DAML+OIL, or OWL, which for instance only support binary relationships among objects. Nevertheless, we attempt to support these ontology languages (see Section 7) by allowing OSM to be described in terms of concepts in these languages.

Figure 3 gives a graphical representation of mini-ontologies that capture the conceptual model instances for our six sample normalized tables in Tables 1, 2, 5, 6, 7 and 8. We refer to a table-specific ontology as a mini-ontology. It is an ontology because it captures concepts, relationships, and constraints related to the table. It is a mini-ontology because it does not expand its concepts beyond the context of the table, which is usually small compared to typical ontologies.

In the OSM notation, boxes represent object sets—dashed if displayable (e.g. Population in Figure 3(b) and Longitude in Figure 3(c)) and not dashed if not displayable because their objects are represented by object identifiers (e.g. Geopolitical Entity in Figure 3(d)). With each object set we can associate a data frame to give it a rich description of its value set. We represent actual objects by labeled dots (e.g. July 2001 in Figure 3(a)). Lines connecting object sets or object sets and objects are relationship sets; these lines may be hyperlines (hyperedges in hypergraphs) when they have more than two connections to object

4 Object sets are in essence what others refer to as concepts in the ontology literature, thus they are used interchangeably in this paper and have the same meaning.

5 The particular notation we use to represent ontologies is not significant, but the concepts it represents are significant. We choose it because: (1) it is fully formal in terms of first-order predicate calculus [15], (2) it covers the typical ontological properties of interest—ISA, hierarchies, part/whole hierarchies, relationships, and concepts including lexical appearance, representation, and computational manipulation, and (3) it has specialized tools for ontology creation and manipulation, ontological table understanding [16], ontological data extraction, and ontological data integration [38].
sets (e.g., the relationship set among the attributes Country, Religion, and Percent in Figure 3(a)). Optional or mandatory participation constraints respectively specify whether objects in a connected relationship may or must participate in a relationship set (an “o” on a connecting relationship-set line designates optional while the absence of an “o” designates mandatory). Thus, for example, the mini-ontology in Figure 3(e) declares that a Place must have a Name and may (but need not) have an Elevation. Arrowheads on lines specify functional constraints—for n-ary relationship sets, n > 2, acute versus obtuse angles disambiguate situations where tuples of two or more tails or heads form the domain or co-domain in the function. Thus, according to Figure 3(e), a Place has a single USGS Quad, and Geographic Coordinates
and the pair Longitude and Latitude have a one-to-one correspondence. Open triangles denote generalization/specialization hierarchies (ISA hierarchies, subset constraints, or inclusion dependencies), so that in Figure 3(c) Continent, Country, and City are all specializations of Geopolitical Entity and thus are each themselves geopolitical entities. We can constrain ISA hierarchies by partition (∪), union (∪), or mutual exclusion (+) among specializations or by intersection (∩) among generalizations. Filled-in triangles denote part/whole, part-of, or aggregation hierarchies.

To construct mini-ontologies from tables, TANGO must discover what concepts (object sets) are involved and how they are related (relationship sets). It must also determine the constraints that hold over the relationship sets (functional, mandatory/optimal participation, aggregations) and among the object sets (generalization/specialization). It does so by mining the table values for constraints such as functional dependencies and inclusion dependencies [19, 26]; by observing mandatory and optional patterns in the data; by using lexicons to find hypernyms/hyponyms and kind-of relationships among terms; and by using data frames to recognize values in labels, tables with multiple concept values in a column, and tables with columns whose values should be split into two or more concepts.

As an example, we obtain the mini-ontology in Figure 3(a) from Table 1 as follows. Country is a key and appears in a leftmost column, strongly suggesting that it should be the tail side of functional dependencies. Population depends on Country, but because July 2001 est. has been factored out as a value associated with the attribute of Population, Population also depends on July 2001 est.. Using abbreviation dictionaries along with WordNet, we can determine that est. is an adjective for the value July 2001 and drop it. Thus, we obtain the functional dependency Country, July 2001 → Population and hence the functional ternary relationship among these three as Table 4 shows. Knowledge from the data frame library recognizes that the values in the Religion columns are Percent values. The religions, which either could be object sets that hold percent values or could themselves be values in a Religion object set, are values since there are many of them (our current threshold is five). Given that religions are values, we therefore have a ternary relationship among Country, Religion, and Percent. Based on constraint mining [19, 26], we can determine that Country and Religion together functionally determine Percent.

Although creation of the remaining mini-ontologies is similar, there are several interesting observations we can make.
(1) The features of Table 2 are very similar to the features in Table 1. We therefore process them in the same way, obtaining the two functional ternaries depending on July 2003 and 2003. This time, however, the Median Age subcategories should be object sets rather than values because there are fewer than five.

(2) For Figure 3(c), our data frame library helps us recognize the Longitude and Latitude values and place them pairwise in a one-to-one correspondence with Geographic Coordinates. Further, since both Country and Geographic Coordinates are keys, they are in a one-to-one correspondence.

(3) For Figure 3(d), WordNet not only knows about continents, countries, and cities, it also knows specific continents and some specific countries and cities. WordNet therefore helps us realize that the unnamed column in Table 6 contains three categories, and it gives us Object as a common hypernym for the name of the generalization. Further, recognition that Object is a common hypernym for thousands of terms would prompt an IDS (Issue/Default/Suggestion) statement [3] raising the Issue that the term Object is likely to be far too general, stating that the Default is to do nothing, and making a Suggestion that the user choose a more meaningful name. We assume that the user follows the suggestion and chooses Geopolitical Entity as the name.

(4) For Figure 3(e), natural language processing helps us recognize that the column in Table 7 with label Type contains instances that represent different concepts, namely City|Town, Lake, Reservoir and Mine. Since each Place is one of these concepts, each of which has a Name, we make Place a generalization of these concepts and then factor out Name from each concept and associate it with Place. Our data frame library recognizes that Lat and Lon are Latitude and Longitude and that together they are Geographic Coordinates. Table 7 indicates that the Geographic Coordinates functionally determines Place and also that Place is unique (although Place does not have unique names). Further, some of the Elevation values are unknown, which lets us conclude that the Elevation can be optional.

(5) For Figure 3(f), we can recognize and disregard the rank (Pos) numbers in Table 8. Further, for Figure 3(f), we use natural language processing and WordNet to find continents, countries, and regions as concepts that are all specializations of Where Spoken. Further, they tell us that Major is not a noun and therefore not
another object or concept. Constraint mining [19, 26] leads to an understanding that the relationship from Language to Speakers is functional, that the relationship between Language and Where Spoken is many-to-many, and that the relationship between Where Spoken and the Name of each Continent, Region, and Country is one-to-one.

5. Discovery of Inter-Ontology Mappings

Our approach to discovering inter-ontology mappings is multifaceted, which means that we use all evidence at our disposal to determine how to match concepts. In using this evidence we look not only for direct matches as is common in most schema matching techniques [1, 10, 23], but also for indirect matches [3, 38]. Thus, for example, we are able to split or join columns to match the single Geographic Coordinates column in Table 5 with the pair of columns, Lat and Lon, in Table 7; we are also able to divide the values in the Place column in Table 7 into several different object sets. We discuss relevant techniques in the following paragraphs.

Label Matching. We have successfully experimented with machine-learned decision trees over WordNet features such as synonyms,\(^6\) word senses, and hypernyms/hyponyms [14]. In [6] we have also successfully experimented with modified soundex matching, Levenshtein edit-distance, and longest common subsequence. These modified measures are particularly useful when name matching is obscured by shortened mnemonic names, abbreviations, and acronyms, which are sometimes found in table headers.

Value Similarity. We [14] and others (e.g., [21]) have successfully used machine-learned rules to match object sets based on value characteristics such as alphanumeric features including length, alpha/numeric ratio, space/nospace ratio and numeric features such as mean and variance. Gaussian value matching and regression matching allow us to match imprecise but highly correlated value sets such as population values and import/export estimates.

Expected Values. Using constant value recognizers in data frames, we have shown that finding and matching expected values in value sets

\(^6\) Surprisingly, neither direct word match nor synonym match mattered in our machine-learned decision-tree rule for matching labels. Instead, the number of common hypernym roots and the distances to common hypernyms dominated the rule. Of course, identical words and synonyms have common hypernym roots at a minimal distance from the words, which mitigates our surprise.
provides significant leverage in schema matching [16]. Being able to recognize values such as latitudes, longitudes, distances, dates, times, and percentages helps us match object sets. Data frame recognizers also help distinguish labels from values in tables, decompose or compose value strings for matching, and determine whether value sets are unions or subsets of other value sets [16].

Constraints. In [3] we studied constraints in the context of schema matching. These include keys in tables (as well as nonkeys), functional relationships, one-to-one correspondences, subset/superset relationships, and optional and mandatory constraints involving unknown and null values. Others have derived constraints from typed hierarchies [31] and recurrent subpatterns [35].

Structure. We [38] and others [5, 28, 10, 23] have developed matching algorithms based on structural context. We have been able to use proximity, node importance as measured by in/out-degree, and neighbor similarity to help match object sets.

As an illustration of mappings among mini-ontologies, we next describe candidate mappings between the mini-ontologies Figure 3.

For mini-ontologies 3(a) and 3(b), we discover label similarities between concepts in 3(a) and 3(b). Indeed, the labels *Country* and *Population* in mini-ontology 3(a) match exactly the same labels in mini-ontology 3(b). Further, examination of the data value characteristics associated with those concepts in the tables results in reinforcement of the label matches. For population values, Gaussian matching and regression matching apply nicely. In addition, we discover that the data frames that match values for concepts in mini-ontology 3(a) are the same data frames that match to values of corresponding object sets in mini-ontology 3(b), including the data-frame matches recognizing both *July 2001* and *July 2003* as dates. These mappings and matchings strongly suggest that the two ternary *Population* relationship sets 3(a) from [9] and 3(b) from [37] match. They also suggest an adjustment—replace the two dates with a *Date* object set and let the two dates be objects in the object set rather than individual objects connected to the relationship set.

It is common to find this kind of strong agreement between geopolitical information sources. This is of interest to us, because when this does happen, it is common for the information to be presented in different formats as is the case here (see Figures 1 and 2). The fact that someone apparently took the trouble to reorganize the information in [9] in a structure different from its source [37] is interesting. It supports the notion that although we use tables to build ontologies, humans who build tables indirectly collaborate in ways that TANGO ontologies approximate.
In looking at other mini-ontologies in Figure 3, we discover that the label Country also matches labels in mini-ontologies 3(c), 3(d), and 3(f). We can perform a direct evaluation of the match for the data associated with the label Country in the mini-ontology 3(c) because its Country object set is displayable, but for 3(d) and 3(f) we must do something different because their Country object sets are non-displayable. In both cases, the evaluation involves searching for associated object sets that contain names of the non-displayable object identifiers. In both 3(d) and 3(f) we find Name associated with a generalization. Further analysis reveals that many values in the Name object sets match names in the Country object set in 3(a). Thus we conclude that Country in 3(a) matches with the structural aggregation through a generalization/specialization of Name and Country in Figures 3(d) and 3(f).

The label Population in the mini-ontology in Figure 3(a) matches with Population in Figure 3(d). The date objects, July 2001 and January 15, 2001, also match in the sense that the Date data frame recognizes them both. (The "?", explicitly denoting the possibility of a null, is not problematic because when we consider the concept to be a Date, we can simply make the connection optional.) In order to match the relationship sets in 3(a) and 3(d) in which Population appears, however, we have to recognize that Country in 3(d) is a specialization of Geopolitical Entity and that we can match the non-displayable Country with the displayable Country using Name associated with Geopolitical Entity as described above.

In examining potential concept mappings between mini-ontology 3(b) and other mini-ontologies, we encounter situations between 3(b) and 3(d) identical to those between 3(a) and 3(d). Thus, the resulting mappings are the same.

For mini-ontology 3(c), in addition to the previous matches discovered for the Country concept with mini-ontologies 3(a), 3(b), 3(d) and 3(f), there is one additional match of interest. The labels for Geographic Coordinates, Longitude and Latitude match with identical labels in mini-ontology 3(e). Applying our multifaceted approach we are able to confirm these matches.

Using similar analyses for mini-ontology 3(d), TANGO is able to recognize that not only do Country and Population match with concepts in other mini-ontologies as described above, but that Continent, Country, City, Name, and Geopolitical Entity also have potential matching concepts in other mini-ontologies. The labels of the non-displayable concepts Continent and Country match identically with the labels of non-displayable concepts in mini-ontology 3(f). The label City matches partially with the label City | Town in mini-ontology 3(e), both of which
are also non-displayable concepts. The label for the displayable concept
Name matches in Figures 3(e) and 3(f). Close examination, however,
reveals that the data values for the data associated with the concept
Name in these three mini-ontologies do not have a strong correlation.
Nevertheless, we also note that _Name_ is associated with an object set
which is the parent concept of _Continent_, _Country_, and _City_ and that,
limited to these associations, the data has a high correlation, especially
for _Continent_ and _Country_ between 3(d) and 3(f). This allows us to
calculate that _Continent_ in 3(d) and 3(f) match, that _Country_ in 3(d)
and 3(f) match, and that _City_ in 3(d) and _City|Town_ are a likely match.
Since we have both _Continent_ and _Country_ matches between 3(d) and
3(f), which cover a large majority of the possible matches between
Geopolitical Entity in 3(d) and _Where Spoken (Major)_ in 3(f), TANGO
also concludes that these two generalizations are a likely match.

Having tried all the combinations but one, TANGO attempts to
discover additional mappings between mini-ontology 3(e) and 3(f). But
it finds none.

6. Ontology Merge

Once TANGO has discovered mappings between mini-ontologies or be-
tween a mini-ontology and the ontology we are building, it can begin
the merging process. Sometimes the match is such that we can directly
fuse two ontologies by simply merging directly corresponding nodes and
edges of both. Often, however, merging induces conflicts that must be
resolved.

We use three basic approaches to conflict resolution: (1) automatic
adjustment based on constraint satisfaction, (2) synergistic adjustment
based on IDS statements [3], and (3) multiple adjustments leading to
multiple ontological views with mappings between them. All three of
these approaches rely on being able to determine plausible merges.
Then, for automatic adjustments, we can take the best among the
plausible merges; for synergistic adjustments, we can raise the impor-
tant issues and make suggestions, letting an ontology make the final
decisions. For multiple adjustments, can keep all plausible merges and
later eliminate those discarded in synergistic evaluations and those that
no longer stand up to new evidence gathered as the process continues.

To determine plausible merges based on discovered mappings, we
consider constraint violations and congruency principles. Constraint vi-
lations include functional/non-functional mismatches, optional/mand-
datory mismatches, displayable/non-displayable mismatches, and sub-
set/superset constraint violations. Congruency principles [7, 18] at-

Figure 4. Growing Ontology after Merging the Mini-Ontologies in Figures 3(a) and 3(b).

tempt to ensure that all objects in an object set have the same properties; the objects in an object set are congruent when this principle holds and are otherwise incongruent. Other similar principles of formal ontology construction also apply [18], as well as related work on merging ontologies (e.g. [27]) and comparing and aligning ontologies (e.g. [4]). We illustrate this merging process by merging the mini-ontologies in Figure 3.

We look initially for mini-ontologies that exhibit the largest possible overlap (as measured by the number of inter-ontology mappings) with respect to the size of the mini-ontologies. Thereafter we select mini-ontologies that overlap the most with our growing ontology. In our example, the overlap is much the same for all mini-ontologies that do overlap. Thus, we just begin by merging the first two mini-ontologies 3(a) and 3(b).

1st Merge: Country matches Country and Population matches Population. Both July 2001 and July 2003 are date components associated with Population, and we merge them as a Date object set. Figure 4 shows the resulting initial ontology.

2nd Merge: Building on the 1st Merge, we add the mini-ontology 3(d) and obtain the emerging ontology in Figure 5. Here, we must reconcile the displayable/non-displayable Country object sets, but this is straightforward based on the mappings we have already discovered. Thus, we let Name be an inherited property for all continents, countries, and cities as Figure 5 shows. According to congruency
principles, we also let Population be an inherited property and thus omit it from the Country specialization. Congruency holds in Figure 5 because the non-displayable concept Geopolitical Entity is a generalization of the non-displayable concepts Continent, Country, and City, all of which—according to mini-ontology 3(d)—mandatorily have Population and Country in mini-ontologies 3(a) and 3(b). Notice that in the merged ontology in Figure 5 the concept Country is now non-displayable; it inherits the Name property, which contains the names that initially were in the Country object sets in mini-ontologies 3(a) and 3(b).

3rd Merge: Continuing, we merge the mini-ontology in Figure 3(f) with the growing ontology in Figure 5 and obtain the ontology in Figure 6. Here, the mappings TANGO has already generated indicate that the objects in the object sets Geopolitical Entity and Where Spoken (Major) largely overlap and that both the Continent and Country object sets match. When merging a mini-ontology into a growing ontology, TANGO uses, as its default, the name it already has in the growing ontology (a user, of course, may change the name). Thus, the generalization in the merged ontology in Figure 6 becomes Geopolitical Entity. After the merge, there is insufficient evidence to maintain the mandatory participation constraints for Population and Language, and TANGO thus changes them to be optional participation constraints. There is sufficient evidence, however, to maintain the mandatory participation constraint for Name.
Figure 6. Growing Ontology after Merging the Mini-Ontologies in Figures 3(a), 3(b), 3(d) and 3(f).

4th Merge: We next merge mini-ontology 3(c), obtaining the ontology in Figure 7. This merge is straightforward based on the already discovered mappings. The displayable Country object set in 3(c) becomes non-displayable, and its values become part of the Name object set inherited from Geopolitical Entity. The relationship sets attached to the displayable Country object set in 3(c) are instead attached to the non-displayable Country object set.

5th Merge: Finally, we add mini-ontology 3(e). We have already found mappings between the identically named object sets Geographic Coordinates, Longitude, and Latitude. This part of the merge is straightforward. The remaining part of the merge is more difficult, not so much because it is structurally complex (TANGO can handle that part), but because the evidence based on partially overlapping cities and the connection to the geographic coordinates is not likely to be strong enough for TANGO to decide on its own what the relationship between Place and Geopolitical Entity should be. It does, however, have enough evidence to be able to pose an intelligent IDS statement to a user. Observe that Geographic Coordinates is a property of the concept Place in mini-ontology
Figure 7. Final Ontology after Merging the Mini-Ontologies in Figures 3(a) through 3(f).

3(e), while in the growing ontology it is a property of the concept Geopolitical Entity. This leads TANGO to consider that perhaps Place and Geopolitical Entity are the same concept. With further exploration, TANGO can discover that although Place has a Name just like Geopolitical Entity does, the more specialized concepts Elevation, USGS Quad, Lake, Reservoir and Mine are not the kind of concepts found as specializations of Geopolitical Entity. The concept City | Town, however, does resemble the concept City in the growing ontology. Thus, the two generalization/specializations can potentially be merged. So TANGO can pose this possibility to a user. We assume in the figure that the user replies that the generalization/specializations can be merged with Place as a generalization of Geopolitical Entity and City | Town as a specialization of Geopolitical Entity. As for sorting out where the relationship sets should be attached, TANGO’s default is to select the highest point in the generalization/specialization hierarchy. It therefore associates Geographic Coordinates with Place but makes the association optional because it now has evidence that not every place
has geographic coordinates recorded for it (in particular, continents, regions, and some cities do not have geographic coordinates in our particular version of the growing ontology). The final result is the ontology in Figure 8.

7. Applications

Semantics is a grand challenge for the current generation of computer technology, particularly as it relates to the Semantic Web. It is the key for unlocking the door, for example, to personal agents that can roam the Semantic Web and carry out sophisticated tasks for their masters, to information exchange and negotiation in e-business, and to automated, large-scale, in-silico experiments in e-science. We do not claim that TANGO will resolve this challenge, but we do claim that it addresses related issues and that its successful realization would help us move a step closer to a resolution. As specific research in this direction, we offer the following observations about Semantic Web construction.
As the Semantic Web becomes more popular, a question of increasing importance will be how to convert some of the interesting unstructured and semi-structured, data-rich documents on the web as they now stand into Semantic Web documents. In [6] we proposed a way to bridge the gap between the current web and the Semantic Web by semiautomatically converting Resource Description Framework Schemas (RDFS's) and DAML+OIL ontologies into data extraction ontologies [13]. The prototype system we built does this conversion. It extracts data and then converts it to RDFS, making it accessible to Semantic Web agents. In addition, the prototype system superimposes the metadata of the extracted information over the document for direct access to data in context, as suggested in [25]. We believe that TANGO-constructed ontologies will work even better for this application.

As part of making TANGO-generated ontologies compliant with the Semantic Web, we need to be able to convert an OSM ontology into public ontologies such as RDFS, DAML+OIL and OWL. As an example, Figure 9 shows a partial listing of an OWL ontology for the mini-ontology in Figure 3(a). It is not hard to convert an OSM ontology into an OWL ontology. Each object set in the OSM ontology in Figure 3(a) maps to an *owl:Class* object in the OWL ontology in Figure 9. Each binary relationship set in the OSM ontology maps to an *owl:ObjectProperty* with a domain and range. We cannot, however, directly transform relationship sets with higher arities, such as the ternary relationship between *Country, Religion*, and *Percent* in Figure 3(a). To overcome this limitation without loss of generality, we create an artificial object set to represent the ternary relationship set and then decompose the ternary relationship set into three binary relationship sets. Figure 9 shows the necessary artificial new class *CRP*. Then, we create a binary relation specification between *CRP* and each of the three OWL classes, *Country, Religion*, and *Percent* in Figure 9. Figure 9 shows the relation specification between *CRP* and *Percent* in the new binary relationship set called *atPercent*. Inside the *ObjectProperty of atPercent*, the *rdf:type* indicates that this is a functional property, and the *rdfs:domain* and *rdfs:range* indicate the direction of the functional property. The *owl:inverseOf* property shows that the *ObjectProperty for CountryHasReligion* is an inverse of the *ObjectProperty atPercent*. As for constraints Figure 9 indicates that the OWL ontology can directly represent OSM's min-max participation constraints using the tags *owl:minCardinality, owl:maxCardinality, or owl:cardinality*. Thus, for example, the *owl:cardinality* in the class *CRP* for the relation association in the *atPercent* property is exactly 1; whereas the relation associations in the *hasReligion* property and the *Country* property (not
shown in Figure 9) have a minimum cardinality of 1 and no maximum cardinality. Although not shown in this example, it is also straightforward to transform OSM’s generalization/specialization to an OWL ontology. To accomplish this, we need to map the object sets onto OWL classes and then specialize using the rdfs:subClassOf property to link the parent and child object sets.

Given that we can convert TANGO-generated ontologies to Semantic Web ontologies, we are now able to annotate web pages associated with those ontologies with ontologies that software agents can use to “understand” the tables in those web pages. Thus, we are able to realize, at least partially, the goal of semi-automatically converting HTML pages into Semantic Web pages.

8. Concluding Remarks

We have presented our vision for TANGO—a way to generate ontologies from tables. Our generation procedure has four steps.

1. Recognize and normalize table information. Based on the notion of table-equivalent data, we use heuristics and resources such as data frames and WordNet to convert semi-structured data to normalized table information.

2. Construct mini-ontologies from normalized tables. Each table represents a small part of a larger ontology. Given a normalized table, we exploit the data and relationships in the table to construct a conceptual model. We represent conceptual model instances in OSM, which gives us a convenient and powerful way to represent ontological concepts (as object sets) and ontological associations (as relationship sets) and a way to represent ontological constraints (functional dependencies, cardinality relationships, optional/mandatory requirements, and generalization/specialization).

3. Discover inter-ontology mappings. Based on previous work on schema mapping (both our own and the work of others), we discover semantic mappings among mini-ontologies and also between mini-ontologies and larger application ontologies. The approach is multifaceted and thus depends on exploiting multiple auxiliary resources and multiple self-contained clues about the data and metadata in a populated ontology.

4. Merge mini-ontologies into a growing application ontology. We automatically find plausible ontology merges. When conflicts arise,
Towards Ontology Generation from Tables

```xml
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
  <!ENTITY dbock "http://www.deg.byu.edu/ontologies/dbock#" >
  ... ]>
<rdf:RDF xmlns:="http://www.deg.byu.edu/ontologies/dbock#"
  ...
  <owl:Class rdfID="Country">
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasReligionAtPercent" />
      <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
    </owl:Restriction>
  </owl:Class>
  <owl:Class rdfID="Religion">
    <owl:Restriction>
      <owl:onProperty rdf:resource="#CountryAtPercent" />
      <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
    </owl:Restriction>
  </owl:Class>
  <owl:Class rdfID="Percent">
    <owl:Restriction>
      <owl:onProperty rdf:resource="#CountryHasReligion" />
      <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
    </owl:Restriction>
  </owl:Class>
  <owl:Class rdfID="CRP">
    <owl:Restriction>
      <owl:onProperty rdf:resource="#atPercent" />
      <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
    </owl:Restriction>
  </owl:Class>
  <owl:ObjectProperty rdfID="atPercent">
    <rdf:type rdf:resource="#owl:FunctionalProperty" />
    <rdf:domain rdf:resource="#CRP" />
    <rdf:range rdf:resource="#Percent" />
    <owl:inverseOf rdf:resource="#atPercent" />
  </owl:ObjectProperty>
  ...
</rdf:RDF>
```

Figure 9. Partial OWL listing for the mini-ontology in Figure 3(a).
we use alternative approaches to resolve the conflicts: adjust based on constraint satisfaction, synergistically use interactive IDS (Issue/Default/Suggestion) statements, and support multiple versions and allow delayed resolution.

As further motivation for TANGO, we have discussed its application to the Semantic Web. We showed how to convert OSM ontologies into Semantic Web ontologies. This, together with table understanding, provides an immediate way to generate annotated pages that Semantic Web agents can understand and use.

Acknowledgements

This work was supported in part by NSF grant IIS-0083127.

References

Towards Ontology Generation from Tables

Address for Offprints: Yuri A. Tijerino
Computer Science Department
Brigham Young University
TMCB 2228 Provo UT 84602 USA